Design and Performance Analysis of Indexing Schemes for Set Retrieval of Nested Objects

Yoshiharu ISHIKAWA* and Hiroyuki KITAGAWA\+, Members

SUMMARY Efficient retrieval of nested objects is an important issue in advanced database systems. So far, a number of indexing methods for nested objects have been proposed. However, they do not consider retrieval of nested objects based on the set comparison operators such as \(\subseteq \) and \(\subseteq \). Previously, we proposed four set access facilities for nested objects and compared their performance in terms of retrieval cost, storage cost, and update cost. In this paper, we extend the study and present refined algorithms and cost formulas applicable to more generalized situations. Our cost models and analysis not only contribute to the study of set-valued retrieval but also to cost estimation of various indexing methods for nested objects in general.

key words: set retrieval, nested object, signature file, nested index, access method, performance analysis

1. Introduction

Nested objects frequently appear in databases for advanced application areas. Many advanced database systems support some kind of construct to express and manipulate set values. Therefore, efficient indexing methods are required to facilitate retrieval of nested objects based on set comparison operators such as \(\subseteq \). In order to support efficient retrieval of nested objects, several indexing methods such as the nested index, the path index, and the multi-index have been proposed [1], [2]. However, they are not designed to support set-valued retrieval of nested objects. We have proposed the use of superimposed coded signature files as efficient set access facilities for non-nested objects with set attributes and showed their potential capabilities [8]. Previously, we extended the target to multilevel nested objects with set attributes and proposed four set access facilities [9]. Their performance was compared in terms of retrieval, storage, and update costs, but their estimation was performed under the assumption that nested objects do not have set attributes except for leaf-level attributes.

In this paper, we consider more general situations in which nested objects may have set attributes in their nonleaf-level attributes. We present revised algorithms and cost formulas taking this extension into account and show cost evaluation results. So far, most performance analyses of indexes for nested objects have been performed assuming that nested objects do not have set attributes [1], [2]. Therefore, some of our results also contribute to analysis of indexes for nested objects in general as well as their set-valued retrieval.

The remainder of this paper is organized as follows. Section 2 introduces the notion of set objects and set retrieval of nested objects. Section 3 explains the four set access facilities for nested objects. Section 4 describes our cost model. Section 5 shows the results of our analysis of the four access facilities. Section 6 gives a summary and concludes the paper.

2. Preliminaries

In this section, we informally define the notion of nested objects as the basis of the following discussion. Then a sample query is shown.

An object comprises tuple-structured data defined by the tuple constructor \((\ldots)\) and has one or more attributes. Each object is identified by its object identifier (OID). The structure of objects in a class is specified by the class definition. A set of class definitions is called a schema. We consider two types of attributes: an atomic attribute takes a primitive value or an OID as its value, and a set attribute takes a set of primitive values or an OID set of objects in some class as its value. In a schema, a set attribute is specified by the set constructor \((\ldots)\). An example schema is shown in Fig.1.

If an object \(O\) has an OID of some object \(O'\) as a primitive attribute value, or has an OID of some object \(O'\) in its set attribute value, we say that the object \(O\) references object \(O'\). Next, assume that classes \(C_1, C_2, \ldots, C_n\) are defined in a schema. A path \(P\) is defined as \(P = C_1.A_1.A_2.\ldots.A_n\), where \(A_i (1 \leq i \leq n-1)\) is an attribute of the class \(C_i\) and takes an OID of a \(C_{i+1}\) object or an OID set of \(C_{i+1}\) objects as its value. \(A_n\) is an attribute of \(C_n\) and can take a primitive value, a set of primitive values, an OID, or an OID set as its value. An

\[
\text{Dept} = \{\text{name: str, proj: (Proj), \ldots}\}, \quad \text{Proj} = \{\text{name: str, emp: (Emp), leader: Emp, \ldots}\}, \quad \text{Emp} = \{\text{name: str, hobbies: (str), \ldots}\}
\]

Fig. 1 An example schema.
instance of the path P has the form $O_1.O_2.\ldots.O_n.X$, where O_1 is an OID of a C_1 object (this object is called the root object). If the attribute A_i ($1 \leq i \leq n - 1$) is a primitive attribute, O_{i+1} is an OID of a C_{i+1} object which appears as the A_i value of O_i. If A_i is a set attribute, the A_i value of O_i contains OID O_{i+1} as a set element. X is the A_n value of the object O_n.

In this paper, we consider the following query form over the path $C_1.A_1.A_2.\ldots.A_n$:

\[
\text{select (attribute value(s) of } C_1) \\
\text{from } C_1 \\
\text{where } A_1.A_2.\ldots.A_n \ (\text{op}) \ (\text{set value}),
\]

where $A_1, A_2, \ldots, A_{n-1}$ are primitive or set attributes and A_n is a set attribute. The comparison operator $\langle \text{op} \rangle$ can be \supseteq or \subseteq (set value) is called the query set (Q), and each set stored as an A_n value in the database is called a target set (T). An example of such a query is the following query Q_1 based on the schema in Fig. 1.

Q_1:

\[
\text{select dname} \\
\text{from Dept} \\
\text{where \text{projs.emps.hobbies} } \supseteq \{ \text{"baseball", "skiing"} \}
\]

Q_1 retrieves department names such that hobbies of some employees in the department's projects include both "baseball" and "skiing". This kind of query is called $T \supseteq Q$ (has-subset). If the comparison operator is \subseteq, the query is called $T \subseteq Q$ (is-subset).

In [9], we restricted $A_1, A_2, \ldots, A_{n-1}$ to primitive attributes. However, in this paper, we relax this restriction and deal with more practical situations. Therefore, algorithms and cost models in the following sections are extended and revised.

3. Set Access Facilities for Nested Objects

In this section, we introduce four set access facilities for nested objects: $TSSF$, INX, $TSSF_NIX$, and INX_NIX. As a preparation, we first introduce the notion of a signature file as a set access facility.

3.1 Signature File as a Set Access Facility

Signature files were originally proposed and used in the text retrieval area [5,7,12]. We have proposed the use of signature files as efficient set retrieval facilities and showed their potential capabilities for non-nested objects [8]. For set retrieval, a target signature is generated for each target set and stored in the signature file. First, an element signature is generated for each set element by hashing. Every element signature has F-bit length, and m bits are set to “1”. Then, a target signature is obtained by bitwise OR-ing (superimposed coding) element signatures of all the elements in the target set and stored in the signature file with the corresponding OID. Figure 2 shows the generation of the target signature for a target set (“baseball”, “skiing”, “golf”).

When a query is given, the query signature is generated from the query set in the same way as target signatures. Then, each target signature in the signature file is examined over the query signature for a potential match. If the target signature satisfies a predefined condition implied by the query condition, the corresponding data object becomes a candidate that may satisfy the query. Such a data object is called a drop. Each target set becomes a drop if the following conditions are satisfied [8,11]:

$T \supseteq Q$: query signature \land target signature = query signature

$T \subseteq Q$: query signature \land target signature = target signature,

where \land stands for a bit-wise AND operation. The last step of query processing is called false drop resolution, and each drop is accessed and examined as to whether it actually satisfies the query condition. Drops that fail the test are called false drops, while the qualified data objects are called actual drops.

There are a number of choices in physical signature file organizations [7]. In this study, we use the bit-sliced signature file (BSSF), a well-known storage organization for signature files. BSSF stores signatures in a columnar manner. Thus F files (they are called bit-slice files) are created. Figure 3 illustrates the file structure of BSSF. The result in [8] indicates that BSSF is promising as a set access facility for non-nested objects.

<table>
<thead>
<tr>
<th>Element</th>
<th>Element Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>"baseball"</td>
<td>0100000000000000</td>
</tr>
<tr>
<td>"skiing"</td>
<td>0000000000000000</td>
</tr>
<tr>
<td>"golf"</td>
<td>0000000100000000</td>
</tr>
<tr>
<td>Target Signature</td>
<td>0100000010010100</td>
</tr>
</tbody>
</table>

Fig. 2 Generation of a target signature. ($F = 16$, $m = 2$)

<table>
<thead>
<tr>
<th>bit-slice files</th>
<th>OID file</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100000000000000</td>
<td>oid1</td>
</tr>
<tr>
<td>0010000000000000</td>
<td>oid2</td>
</tr>
<tr>
<td>0001000000000000</td>
<td>oid3</td>
</tr>
<tr>
<td>1010000000000000</td>
<td>oidN</td>
</tr>
</tbody>
</table>

Fig. 3 File structure of BSSF.
3.2 Set Access Facilities for Nested Objects

Now we explain the file structures of four set access facilities for nested objects. \textbf{\textsc{bssf}} is an extension of BSSF to facilitate set accesses to nested objects. \textbf{\textsc{nix}} is based on the \textit{nested index} (NIX) \cite{1,2}, a \textit{B}*-tree-like indexing method proposed for nested objects. \textbf{\textsc{bssf-nix}} is a combination of the BSSF method and the NIX method, and \textbf{\textsc{nix-nix}} uses two NIX files.

An instance of a path \(P = C_1.A_1.A_2.\ldots.A_n \) is expressed in the form \(O_1.O_2.\ldots.O_n \{v_1, v_2, \ldots, v_m\} \), where \(\{v_1, v_2, \ldots, v_m\} \) is a set of primitive values or an OID set. When an instance of \(P \), \(O_1.O_2.\ldots.O_n \{v_1, v_2, \ldots, v_m\} \) is given, the following entries are inserted in each facility.

\textbf{\textsc{bssf}}: The set signature \(S \) created from the set \(\{v_1, v_2, \ldots, v_m\} \) is paired with \(O_1 \), the OID of the root object, and the pair \(\langle S, O_1 \rangle \) is stored in the BSSF file. If \(x \) instances of the path \(P \) are inserted, BSSF will have \(x \) entries.

\textbf{\textsc{nix}}: For each element of the set \(\{v_1, v_2, \ldots, v_m\} \), the pair \(\langle v_i, O_1 \rangle \) \((1 \leq i \leq m)\) is created and inserted into the NIX file. Since the format of a leaf-node entry of NIX is \(\langle \text{key value}, \text{OID set} \rangle \) if the pair \(\langle v_i, O_1 \rangle \) is inserted into NIX, the corresponding leaf-node entry becomes \(\langle v_i, \{O_1, \ldots\} \rangle \).

\textbf{\textsc{bssf-nix}}: The set signature \(S \) created from the set \(\{v_1, v_2, \ldots, v_m\} \) is paired with \(O_n \), the OID of the \(C_n \) object in the path \(P \), and the pair \(\langle S, O_n \rangle \) is inserted into the BSSF file. Next, the pair \(\langle O_n, O_1 \rangle \) is inserted into the NIX file.

\textbf{\textsc{nix-nix}}: For each element of the set \(\{v_1, v_2, \ldots, v_m\} \), the pair \(\langle v_i, O_n \rangle \) \((1 \leq i \leq m)\) is created and inserted into an NIX file. This NIX file is called NIX\(_3\). Next, the pair \(\langle O_n, O_1 \rangle \) is inserted into another NIX file. This NIX file is called NIX\(_2\).

3.3 Query Processing Algorithms

In this subsection, query processing algorithms for the four set access facilities are described.

(1) \textbf{\textsc{bssf}}

Both \(T \supseteq Q \) and \(T \subseteq Q \) are processed as follows.

1. BSSF is searched based on the query condition and an OID set of \(C_1 \) objects is obtained. This set is called \(\text{SOID} \).

2. For each object in \(\text{SOID} \), a forward traversal \cite{1,2} is performed. When the forward traversal from \(O_1 \in \text{SOID} \) is performed, reachable \(C_n \) objects are retrieved. If at least one of the \(C_n \) objects satisfies the query condition \((T \supseteq Q, T \subseteq Q) \), \(O_1 \) is included in the final result of this query and returned.

(2) \textbf{\textsc{nix}}

1. For each element in the query set, NIX is searched. Thus \(D_q \) OID sets of \(C_1 \) objects are obtained, where \(D_q \) is the cardinality of the query set.

2. For \(T \supseteq Q \), the intersection of the \(D_q \) sets is taken. For \(T \subseteq Q \), the union is taken.

3. For \(T \supseteq Q \), \(C_1 \) objects are retrieved based on the OID set and returned.

3'. For \(T \subseteq Q \), the following process is performed.

a. Forward traversals are performed for the OID set, and the corresponding \(C_n \) objects are checked as to whether they actually satisfy the query condition.

b. The root \(C_1 \) objects of the \(C_n \) objects which satisfy condition (a) are returned.

(3) \textbf{\textsc{bssf-nix}}

Both \(T \supseteq Q \) and \(T \subseteq Q \) are processed as follows.

1. BSSF is searched based on the query condition and an OID set of \(C_n \) objects is obtained.

2. Each \(C_n \) object in the OID set is retrieved and checked as to whether it actually satisfies the query condition.

3. For each \(C_n \) object that satisfies the condition, NIX is searched using its OID as a key value. As a result, an OID set of \(C_1 \) objects is obtained.

4. \(C_1 \) objects are retrieved based on the OID set and returned.

(4) \textbf{\textsc{nix-nix}}

1. For each element in the query set, NIX\(_1\) is searched. Thus \(D_q \) OID sets of \(C_n \) objects are obtained.

2. For \(T \supseteq Q \), the intersection of the \(D_q \) sets is taken. For \(T \subseteq Q \), the union is taken.

3. Only for \(T \subseteq Q \), \(C_n \) objects are retrieved based on the OID set and checked as to whether they actually satisfy the query condition. Objects that do not satisfy the condition are removed from the OID set.

4. For each element of the OID set, NIX\(_2\) is searched. Then an OID set of \(C_1 \) objects is obtained.

5. \(C_1 \) objects are retrieved based on the OID set.
3.4 Update Algorithms

Algorithms for inserting a new path instance \(P = C_1A_1A_2 \cdots A_n \) have already been described in Subsect. 3.2. Therefore, here we only show the deletion algorithms in the case that a \(C_n \) object \(O_n \) is deleted from the database and that backward references are not supported. Assume that \(O_n \) is already retrieved into memory and the \(A_n \) value of \(O_n \) is \(\{v_1, v_2, \ldots, v_m\} \).

(1) \(\mathcal{I}_{\text{BSSF}} \)

1. A query signature is generated from \(\{v_1, v_2, \ldots, v_m\} \) and BSSF is searched based on the set equality condition (\(T \equiv Q \)) [11]. Namely, the target signatures which are the same as the query signature are searched. Thus an OID set of candidate \(C_1 \) objects is obtained.

2. For each object in the OID set, a forward traversal is performed. As a result, an OID set of \(C_1 \) objects that actually reference \(O_n \) are given. This set is called \(S_{\text{OID}} \).

3. For each \(O_1 \in S_{\text{OID}} \), the corresponding entry is deleted from the BSSF file.

(2) \(\mathcal{I}_{\text{NIX}} \)

Under the assumption that \(A_1, \ldots, A_{n-1} \) may be set attributes, the deletion algorithm for NIX becomes complicated. A \(C_1 \) object \(O_1 \) may have multiple path instances to leaf-level objects. Therefore, \(O_1 \) has multiple set values corresponding to the multiple path instances, and they are not necessarily disjoint. Since NIX does not have counting information in its entries, we cannot delete \(\langle v_i, O_1 \rangle \) from the NIX leaf-node entry immediately. We may settle this problem by modifying the file structure of NIX, but here we present an algorithm based on the normal NIX file structure.

1. For each element \(v_i \) (\(1 \leq i \leq m \)), NIX is searched. Thus \(m \) OID sets of \(C_1 \) objects are obtained. Next, the union is taken. This set is called \(S_{\text{OID}} \).

2. For each object in \(S_{\text{OID}} \), a forward traversal is performed and checked to see whether \(O_n \) is referenced. In this forward traversal, all reachable \(C_n \) objects are retrieved. As a result, an OID set of \(C_1 \) objects which actually reference \(O_n \) is obtained. Let this set be \(S'_{\text{OID}} \).

3. For each object \(O_1 \in S'_{\text{OID}} \), the referenced \(C_n \) objects are examined. If \(v_i \) (\(1 \leq i \leq m \)) is not contained in the \(A_n \) value of any \(C_n \) objects other than \(O_n \), the NIX entry \(\langle v_i, O_1 \rangle \) is deleted.

(3) \(\mathcal{I}_{\text{BSSF-NIX}} \) and \(\mathcal{I}_{\text{NIX-NIX}} \)

Algorithms for \(\mathcal{I}_{\text{BSSF-NIX}} \) and \(\mathcal{I}_{\text{NIX-NIX}} \) are straightforward. For \(\mathcal{I}_{\text{BSSF-NIX}} \), the entry of the BSSF file that corresponds to \(O_n \) is deleted and the entries in the NIX file that reference \(O_n \) are deleted. Deletions on \(T_{\text{NIX-NIX}} \) are processed in a similar manner.

4. Cost Models

In this section, cost models for the four set access facilities are developed. First, as a preliminary, cost formulas for BSSF and NIX are shown. Then, retrieval costs, storage costs, and update costs of the four set access facilities are derived. Only the number of page accesses will be taken into account as a cost factor. To simplify the estimation, we assume all target sets have an equal cardinality \(D_t \).

In the cost models, the formula of Yao [13] is used to estimate the number of page accesses. To retrieve \(t \) records from \(n \) records stored on \(p \) pages, the number of page accesses is estimated by

\[
npa(t, n, p) = p \left(1 - \prod_{i=1}^{t} \frac{n(1-1/p)^{-i+1}}{n-i+1} \right).
\]

4.1 Cost Formulas for BSSF and NIX

Here general cost formulas for BSSF and NIX are shown. They are revised versions of formulas in [8],[9]. Symbols and their definitions are summarized in Table 1.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition and Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_t)</td>
<td>cardinality of a target set</td>
</tr>
<tr>
<td>(D_q)</td>
<td>cardinality of a query set</td>
</tr>
<tr>
<td>(N)</td>
<td>number of objects</td>
</tr>
<tr>
<td>(N_i)</td>
<td>number of (C_i) objects</td>
</tr>
<tr>
<td>(V)</td>
<td>cardinality of the set domain of the attribute (A_n) (= 10,000)</td>
</tr>
<tr>
<td>(P)</td>
<td>size of a disk page (= 4096 bytes)</td>
</tr>
<tr>
<td>(b)</td>
<td>number of bits per byte (= 8)</td>
</tr>
<tr>
<td>(oid)</td>
<td>size of an OID (= 8 bytes)</td>
</tr>
<tr>
<td>(P_o)</td>
<td>number of page accesses to fetch an object (= 1)</td>
</tr>
<tr>
<td>(A(\cdot)(N))</td>
<td>total number of actual drops in (N) objects</td>
</tr>
<tr>
<td>(F)</td>
<td>signature size in bits</td>
</tr>
<tr>
<td>(m)</td>
<td>number of “1”s (weight) in an element signature</td>
</tr>
<tr>
<td>(F_d(\cdot))</td>
<td>false drop probability</td>
</tr>
<tr>
<td>(SC_{bsf}(N))</td>
<td>storage cost for a bit-slice file for (N) objects (= (\lceil N/P \rceil))</td>
</tr>
<tr>
<td>(M(\cdot))</td>
<td>number of bit-slice files to be retrieved</td>
</tr>
<tr>
<td>(LC_{OID}(\cdot)(N))</td>
<td>access cost for the OID file for (N) objects</td>
</tr>
<tr>
<td>(N_{oid})</td>
<td>number of OIDs in a disk page (= (P/oid) = 512)</td>
</tr>
<tr>
<td>(SC_{OID}(N))</td>
<td>size of the OID file for (N) objects (= (N/N_{oid}) pages)</td>
</tr>
</tbody>
</table>
(1) BSSF

The retrieval cost of BSSF, \(RC_{\text{BSSF}}(e)(N) \), is given in a general form:

\[
RC_{\text{BSSF}}(e)(N) = SC_{\text{BSSF}}(N) \times M_e + LC_{\text{OID}}(e)(N) + P_e(A_e(N) + Fd_{\{e\}(N - A_e(N)))
\] (1)

\[
LC_{\text{OID}}(e)(N)
\]

\[
= npa(A_e(N) + Fd_{\{e\}(N - A_e(N))), N, SC_{\text{OID}}(N)),
\] (2)

where \(e \) denotes the type of query \((T \supseteq Q, T \subseteq Q)\). Formulas for false drop probability \(Fd_{\{e\}} \) are shown below. \(M_e \) is the number of bit-slice files to be accessed and is given as

\[
M_{\{T \supseteq Q\}} = m_q
\] (3)

\[
M_{\{T \subseteq Q\}} = F - m_q
\] (4)

[8],[11], where \(m_q \) is the expected number of “1”s (weight) in the query signature and is given by \(m_q \approx F(1 - e^{-\frac{m}{D_q}}) \).

The storage cost of BSSF is simply derived as

\[
SC_{\text{BSSF}}(N) = SC_{\text{BSSF}}(N) \times F + SC_{\text{OID}}(N).
\] (5)

Cost formulas for updates, namely, \(IC_{\text{BSSF}} \) for insertion and \(DC_{\text{BSSF}} \) for deletion, are derived as

\[
IC_{\text{BSSF}} = 2(m_e + 1)
\] (6)

\[
DC_{\text{BSSF}}(N) = \frac{SC_{\text{OID}}(N)}{2} + 2m_t + 1
\] (7)

[9], where \(m_t \) is the weight of the target signature and is given by \(m_t \approx F(1 - e^{-\frac{m}{D_t}}) \).

(2) NIX

We derive cost formulas for NIX based on [3],[4]. Let \(x \) be the total number of keys and \(y \) be the number of entries corresponding to a key value in a leaf-node page of NIX. When \(z \) index keys are given, the retrieval cost of NIX

\[
RC_{\text{NIX}}(x, y, z) = \left\{ \begin{array}{ll}
\sum_{k=1}^{h} npa(t_k, n_k, p_k) & (z \geq 2) \\
h + 1 & (z = 1)
\end{array} \right.
\] (8)

where \(t_h = z \) and \(t_k = npa(t_{k-1}, n_{k-1}, p_{k}) \). \(n_{k} \) and \(p_{k} \) are the numbers of records and pages at level \(k \) of NIX and \(h \) is the height of NIX. These values are derived based on the parameters \(x \) and \(y \) using the cost formulas in [1].

The storage cost of NIX is

\[
SC_{\text{NIX}}(x, y) = \sum_{k=1}^{h} p_k
\] (9)

The insertion and the deletion costs based on \(z \) key values are

\[
IC_{\text{NIX}}(x, y, z) = DC_{\text{NIX}}(x, y, z)
\]
Then, forward traversals are performed for these C_1 objects. Therefore, the total retrieval cost is

$$RC\{I_{\text{BSSF}}, c\} = [\text{Eq. (15)}] + PFT([\text{Eq. (16)}], A(c(fan_1^n))),$$

(17)

where PFT is the forward traversal cost given in the Appendix.

(2) I_{NIX}

For $T \geq Q$, the retrieval cost is derived as

$$RC\{I_{\text{NIX}}, T \geq Q\} = RC_{\text{NIX}} \left(V, \overline{D_aN_a}, D_a \right)$$

$$+ P_c A(T \geq Q)(N_n).$$

(18)

For $T \leq Q$, the number of OIDs of C_1 objects obtained by the retrieval of NIX is given by

$$npa\left(N_n \left(1 - \frac{\overline{D_aC_{D_1}}}{\overline{C_{D_1}}} \right), N_n, N_n/fan_1^n \right).$$

(19)

Therefore, the retrieval cost is

$$RC\{I_{\text{NIX}}, T \leq Q\}$$

$$= RC_{\text{NIX}} \left(V, \overline{D_aN_a}, D_a \right)$$

$$+ PFT([\text{Eq. (19)}], A(T \leq Q)(fan_1^n)).$$

(20)

(3) $I_{\text{BSSF-NIX}}$

The retrieval cost of I_{BSSF} is

$$RC\{I_{\text{BSSF-NIX}}, c\} = RC_{\text{BSSF}}(c(N_n))$$

$$+ RC_{\text{NIX}}(N_n, 1, A(c)(N_n))$$

$$+ P_c A(c)(N_n).$$

(21)

The second term is the retrieval cost of the NIX file.

(4) $I_{\text{NIX-NIX}}$

For $T \geq Q$, the retrieval cost is given as

$$RC\{I_{\text{NIX-NIX}}, T \geq Q\}$$

$$= RC_{\text{NIX}} \left(V, \overline{D_aN_a}, D_a \right)$$

$$+ RC_{\text{NIX}}(N_n, 1, A(T \geq Q)(N_n))$$

$$+ P_c A(T \geq Q)(N_n).$$

(22)

For $T \leq Q$, the retrieval cost is

$$RC\{I_{\text{NIX-NIX}}, T \leq Q\}$$

$$= RC_{\text{NIX}}(V, \overline{D_aN_a}, D_a) + P_n N_n \left(1 - \frac{\overline{D_aC_{D_1}}}{\overline{C_{D_1}}} \right)$$

$$+ RC_{\text{NIX}}(N_n, 1, A(T \leq Q)(N_n))$$

$$+ P_c A(T \leq Q)(N_n).$$

(23)

The second term is the cost to check the C_n objects whose OIDs are retrieved in the first step (the retrieval of NIX$_1$).

4.3 Update Costs

The costs to insert a path instance $P = C_1A_1A_2 \cdots A_n$ are given by

$$IC\{I_{\text{BSSF}}\} = IC_{\text{BSSF}}$$

$$IC\{I_{\text{NIX}}\} = IC_{\text{NIX}} \left(V, \overline{D_aN_a}, D_a \right)$$

$$IC\{I_{\text{BSSF-NIX}}\} = IC_{\text{BSSF}} + IC_{\text{NIX}}(N_n, 1, 1)$$

$$IC\{I_{\text{NIX-NIX}}\} = IC_{\text{NIX}} \left(V, \overline{D_aN_a}, D_a \right)$$

$$+ IC_{\text{NIX}}(N_n, 1, 1).$$

(24)

(25)

(26)

(27)

For I_{BSSF}, the cost for deleting an object O_n is

$$DC\{I_{\text{BSSF}}\}$$

$$\approx SC_{\text{bssf}}(PI) \times nbs$$

$$+ npa(2, N_{\text{oid}}SC_{\text{OID}}(PI), SC_{\text{OID}}(PI))$$

$$+ 2P_n n + 2$$

(28)

[10], where nbs is the weight of a query signature that satisfies $Fd(T \geq Q)(PI - A(T \geq Q)(PI)) \approx 1$. The second term is the lookup cost of the OID file. The third and fourth terms represent the forward traversal cost and the rewrite cost, respectively.

The deletion cost for I_{NIX} is estimated as

$$DC\{I_{\text{NIX}}\} = RC_{\text{NIX}} \left(V, \overline{D_aN_a}, D_a \right)$$

$$+ [\text{Eq. (30)}]$$

$$+ 2P_n D_t \left(1 - \frac{1 - \overline{C_{D_1}}}{\overline{C_{D_1}}} \right) \times (N_n - 1),$$

$$N_n, \overline{N_n}f\overline{an_1^n}.$$

(29)

$$FFT \left(npa \left(\left(1 - \frac{\overline{D_aC_{D_1}}}{\overline{C_{D_1}}} \right) \times (N_n - 1), 1, N_n, N_n/fan_1^n \right) \right)$$

(30)

[10], where Eq. (30) is the forward traversal cost. In this case, all referenced C_n objects must be traversed. Therefore the full forward traversal cost FFT (see Appendix) is used. The third term in Eq. (28) represents the read and rewrite costs for the NIX entries.

For $I_{\text{BSSF-NIX}}$ and $I_{\text{NIX-NIX}}$, the deletion costs are derived as

$$DC\{I_{\text{BSSF-NIX}}\} = DC_{\text{BSSF}} + DC_{\text{NIX}}(N_n, 1, 1)$$

$$DC\{I_{\text{NIX-NIX}}\} = DC_{\text{NIX}} \left(V, \overline{D_aN_a}, D_a \right)$$

$$+ DC_{\text{NIX}}(N_n, 1, 1).$$

(31)

(32)

4.4 Storage Costs

The storage costs for the four set access facilities are as follows:

$$SC\{I_{\text{BSSF}}\} = SC_{\text{BSSF}}(PI)$$

$$SC\{I_{\text{NIX}}\} = SC_{\text{NIX}} \left(V, \overline{D_aN_a} \right)$$

$$SC\{I_{\text{BSSF-NIX}}\} = SC_{\text{BSSF}}(N_n) + SC_{\text{NIX}}(N_n, 1)$$

$$SC\{I_{\text{NIX-NIX}}\} = SC_{\text{NIX}} \left(V, \overline{D_aN_a} \right) + SC_{\text{NIX}}(N_n, 1).$$

(33)

(34)

(35)

(36)
5. Cost Analysis

Before comparing the retrieval costs of the four set access facilities, we describe the parameter settings. \(N_n \), the number of objects in the class \(C_n \), is set to 30,000. As the cardinality of \(A_n \) values, we consider two cases: \(D_t = 10 \) and \(D_t = 100 \). For the length of the path, we compare three cases of \(n = 2, 3, 4 \). The fanout parameters are set to \(\text{fan}_{i+1} = \text{fan} \) (1 \(\leq i \leq n - 1 \)). The constant \(\text{fan} \) value is set to 1, 5, or 10. For \(\text{Tbssf} \) and \(\text{Tbssf-nix} \), it is necessary to set the BSSF parameters. We follow the following policy: 1) The storage costs of \(\text{Tbssf} \) and \(\text{Tbssf-nix} \) are equal to or less than those of \(\text{Inix} \) and \(\text{Inix-nix} \). This policy restricts the signature size \(F \). When \(D_t = 10 \), we use \(F = 500 \) (bits) and when \(D_t = 10, F = 5000 \) (bits) is used. 2) The parameter \(m \) is set to \(m = 2 \) based on the results in [8].

5.1 Retrieval Costs

The representative retrieval costs for \(T \subseteq Q \) are shown in Fig. 4 (\(D_t = 10 \)) and Fig. 5 (\(D_t = 100 \)). In this case, forward traversals are only performed by \(\text{Tbssf} \). Therefore, the other three set access facilities do not depend on the fanout parameter \(\text{fan} \) or the path length \(n \). The two figures show a similar tendency. Except for small \(D_q \) values (1 or 2), the retrieval costs are not different and increase monotonically. For small \(D_q \) values, \(\text{Tbssf} \) configurations (especially \(\text{fan} = 10 \)) give the worst costs. This is because \(\text{Tbssf} \) needs forward traversals to process the query. In particular, when \(\text{fanout} \) is large, more \(C_n \) objects correspond to one \(C_1 \) object so that the forward traversal cost increases. When \(D_t = 1 \), there are considerable number of actual drops and false drops. Therefore, the overhead of the forward traversal cost determines the overall cost. However, when \(D_q \geq 2 \) or 3, drops are almost negligible, and the retrieval costs increase linearly. Although we have changed the path length \(n \) and examined the effect on the \(\text{Tbssf} \) cost, it does not affect the retrieval costs very much.

The representative retrieval costs for \(T \subseteq Q \) are shown in Fig. 6 (\(D_t = 10 \)) and Fig. 7 (\(D_t = 100 \)). In this query, \(\text{Tbssf} \) and \(\text{Inix} \) need forward traversals. However,

it seems that the retrieval cost of \mathcal{I}_{BBFF} does not suffer from the penalty of forward traversals and its cost is almost the same as that of $\mathcal{I}_{BBFF-NIX}$. The reason is that the number of false drops of BSSF is very small for these D_q values so that few forward traversals occur.

When $D_t = 10$ and D_q is very small, the retrieval costs of \mathcal{I}_{BBFF} and $\mathcal{I}_{BBFF-NIX}$ are higher than that of $\mathcal{I}_{NIX-NIX}$. However, \mathcal{I}_{BBFF} and $\mathcal{I}_{BBFF-NIX}$ are generally better in other cases. Furthermore, the retrieval costs of \mathcal{I}_{BBFF} and $\mathcal{I}_{BBFF-NIX}$ can be improved by using the smart retrieval strategy, proposed in [8]. Therefore, for $T \subseteq Q$, \mathcal{I}_{BBFF} and $\mathcal{I}_{BBFF-NIX}$ are considered to be superior to \mathcal{I}_{NIX} and $\mathcal{I}_{NIX-NIX}$.

5.2 Storage, Insertion, and Deletion Costs

Storage, insertion, and update costs are shown in Table 2. When $D_t = 10$, the storage costs are almost the same. When $D_t = 100$, the storage costs of \mathcal{I}_{BBFF} and $\mathcal{I}_{BBFF-NIX}$ are almost half those of \mathcal{I}_{NIX} and $\mathcal{I}_{NIX-NIX}$. The four access facilities have almost the same insertion costs.

The deletion cost of \mathcal{I}_{BBFF} depends on n and that of \mathcal{I}_{NIX} depends on n and fan. Therefore, we show the representative costs for \mathcal{I}_{BBFF} and \mathcal{I}_{NIX}. The cost of \mathcal{I}_{NIX} is prohibitively larger than those of the other access facilities. The reason is that \mathcal{I}_{NIX} needs many full forward traversals in deletion processing. The deletion cost of $\mathcal{I}_{BBFF-NIX}$ is rather high, but we expect to reduce the cost by employing some techniques assumed in deriving Eq. (28) for \mathcal{I}_{BBFF} in [10].

6. Summary and Conclusions

In this paper, we have proposed four set access facilities, \mathcal{I}_{BBFF}, \mathcal{I}_{NIX}, $\mathcal{I}_{BBFF-NIX}$, and $\mathcal{I}_{NIX-NIX}$, for nested objects and compared their performance. We extended our cost models in [9] to more general situations in which nested objects may have set attributes in their nonleaf-level attributes. We developed revised algorithms and cost formulas, and analyzed the retrieval costs for two queries ($T \supseteq Q$, $T \subseteq Q$) and the storage and update costs.

As for the retrieval cost for $T \supseteq Q$, the analysis shows that the four access facilities have similar performances except for small D_q values. When $D_q = 1$, \mathcal{I}_{BBFF} is the worst and \mathcal{I}_{NIX} is the best. However, for the retrieval cost for $T \subseteq Q$, \mathcal{I}_{BBFF} and $\mathcal{I}_{BBFF-NIX}$ show relatively stable performance and are better than \mathcal{I}_{NIX} and $\mathcal{I}_{NIX-NIX}$ for a reasonable range of D_q values. \mathcal{I}_{NIX} suffers performance degradation for $T \subseteq Q$ as fanout increases.

The storage costs of \mathcal{I}_{BBFF} and $\mathcal{I}_{BBFF-NIX}$ are equal to or less than those of \mathcal{I}_{NIX} and $\mathcal{I}_{NIX-NIX}$. All access facilities are almost equal as far as insertion costs are concerned. However, the deletion cost of \mathcal{I}_{NIX} is extremely high because of many full forward traversals. The deletion cost of $\mathcal{I}_{BBFF-NIX}$ is slightly higher than those of \mathcal{I}_{BBFF} and $\mathcal{I}_{NIX-NIX}$. However, there is room to improve the deletion cost of $\mathcal{I}_{BBFF-NIX}$ by devising a smarter algorithm.

From our analysis, we can conclude that if we must select only one access facility from the four candidates, it is best to use $\mathcal{I}_{BBFF-NIX}$ because of its stable performance and lower storage cost. The second-best candidate is \mathcal{I}_{BBFF}. If the case of $T \supseteq Q$ and $D_q = 1$ is important, \mathcal{I}_{NIX} may be another candidate. However, it cannot support $T \subseteq Q$ queries very well.

Further study of set access facilities for nested objects is ongoing in our group. The research issues include processing of another type of set query (e.g., set equality) and application of the smart retrieval strategy [8].

Acknowledgement

The authors are grateful to members of Laboratory for Database and Media Systems (Uemura Laboratory), NAIST, and Database Laboratory, Univ. of Tsukuba, for their encouragement and support.

References

where \(y \geq 1 \) is the number of \(C_n \) objects satisfying the condition per \(C_1 \) object. The function \(e(p, q) \) is
\[
e(p, q) = \frac{q}{p} + \sum_{i=2}^{p-q+1} \left(\frac{iq}{p-i+1} \right) \times \prod_{j=0}^{i-2} \left(1 - \frac{q}{p-j} \right).
\]
(A-5)

When \(y < 1 \), \(PFT \) is
\[
PFT(x, y) = PFT(xy, 1)
+ FFT(x(1-y)).
\]
(A-6)

Details of deriving Eqs. (A-2)-(A-6) are given in [10].

Yoshiharu Ishikawa received the B.S., M.E., Dr.Eng. degrees in information engineering from University of Tsukuba in 1989, 1991 and 1995, respectively. He is currently a research associate at Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan. His research interests include the design and implementation of advanced DBMSs and scientific databases. He is a member of the ACM, IEEE Computer Society, IPSJ, and JSSST.

Hiroyuki Kitagawa received the B.Sc. degree in physics and the M.Sc. and D.Sc. degrees in computer science, all from the University of Tokyo, in 1978, 1980, and 1987, respectively. From 1981 to 1988, he was with the Software Product Engineering Laboratory of NEC Corporation. In 1988, he joined the Institute of Information Sciences and Electronics, University of Tsukuba, where he is currently an Associate Professor. His research interests include database system architecture, object database systems, temporal database and version management, text databases, and heterogeneous information resource management. Dr. Kitagawa is a member of ACM, IEEE Computer Society, IPSJ, and JSSST.

Appendix: Forward Traversal Costs

Suppose that \(x \) \(C_1 \) objects are given. We derive the expected number of page accesses in forward traversals from the \(C_1 \) objects to the descendant \(C_n \) objects. We assume the use of the nested-loop forward traversal method [2] and the assumptions made in Sect. 4.

There exist two cases for forward traversals: 1) the traversal cannot be finished until all reachable \(C_n \) objects are obtained (full forward traversal); 2) the traversal can be finished at the time a \(C_n \) object satisfying the condition is found (partial forward traversal). The full forward traversal cost \(FFT \) is derived as
\[
FFT(x) = P_0 \times \sum_{i=1}^{n} fan_i^1.
\]
(A-1)

The partial forward traversal cost \(PFT \) is given as
\[
PFT(x, y) = P_0 \times \sum_{i=1}^{n} e_i(y)
\]
(A-2)
\[
e_i(y) = \left[e_{i+1}(y)/fan_i^{i+1} \right] \quad (1 \leq i \leq n-1)
\]
(A-3)
\[
e_n(y) = e(fan_n^1, y),
\]
(A-4)