Spatial Range Querying for Gaussian-Based Imprecise Query Objects

Yoshiharu Ishikawa, Yuichi Iijima
Nagoya University

Jeffrey Xu Yu
The Chinese University of Hong Kong
Outline

• Background and Problem Formulation
• Related Work
• Query Processing Strategies
• Experimental Results
• Conclusions
Imprecise Location Information

• Sensor Environments
 – Frequent updates may not be possible
 • GPS-based positioning consumes batteries

• Robotics
 – Localization using sensing and movement histories
 – Probabilistic approach has vagueness

• Privacy
 – Location Anonymity
Location-based Range Queries

• Location-based Range Queries
 – Example: Find hotels located within 2 km from Yuyuan Garden
 – Traditional problem in spatial databases
 • Efficient query processing using spatial indices
 • Extensible to multi-dimensional cases (e.g., image retrieval)

• What happen if the location of query object is uncertain?
• Assumptions
 – Location of query object \(q \) is specified as a **Gaussian distribution**
 – Target data: static points

• Gaussian Distribution

\[
p_q(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (x - q)^t \Sigma^{-1} (x - q)\right]
\]

– \(\Sigma \): Covariance matrix
Probabilistic Range Query (PRQ) (2)

- Probabilistic Range Query (PRQ)

\[PRQ(q, \delta, \theta) = \{ o \mid o \in O, \Pr(\|x - o\|^2 \leq \delta^2) \geq \theta \} \]

- Find objects such that the probabilities that their distances from \(q \) are less than \(\delta \) are greater than \(\theta \)
• Is distance between q and p within δ?

pdf of q (Gaussian distribution)

Numerical integration is required
Naïve Approach for Query Processing

• Exchanging roles
 – \(\Pr[p \text{ is within } \delta \text{ from } q] = \Pr[q \text{ is within } \delta \text{ from } p] \)

• Naïve approach
 – For each object \(p \), integrate pdf for sphere region \(R \)
 – \(R \) : sphere with center \(p \) and radius \(\delta \)
 – If the result \(\geq \theta \), it is qualified

• Quite costly!
Outline

• Background and Problem Formulation
• Related Work
• Query Processing Strategies
• Experimental Results
• Conclusions
Related Work

• Query processing methods for uncertain (location) data
 – Cheng, Prabhakar, et al. (SIGMOD’03, VLDB’04, …)
 – Tao et al. (VLDB’05, TODS’07)
 – Parker, Subrahmanian, et al. (TKDE’07, ‘09)
 – Consider arbitrary PDFs or uniform PDFs
 – Target objects may be uncertain

• Research related to Gaussian distribution
 – Gauss-tree [Böhm et al., ICDE’06]
 – Target objects are based on Gaussian distributions
• Background and Problem Formulation
• Related Work
• Query Processing Strategies
• Experimental Results
• Conclusions
Outline of Query Processing

• Generic query processing strategy consists of three phases
 1. Index-Based Search: Retrieve all candidate objects using spatial index (R-tree)
 2. Filtering: Using several conditions, some candidates are pruned
 3. Probability Computation: Perform numerical integration (Monte Carlo method) to evaluate exact probability

• Phase 3 dominates processing cost
 – Filtering (phase 2) is important for efficiency
Query Processing Strategies

• Three strategies
 1. Rectilinear-Region-Based Approach (RR)
 2. Oblique-Region-Based Approach (OR)
 3. Bounding-Function-Based Approach (BF)

• Combination of strategies is also possible
Rectilinear-Region-Based (RR) (1)

• Use the concept of θ-region
 – Similar concepts are used in query processing for uncertain spatial databases

• θ-region: Ellipsoidal region for which the result of the integration becomes $1 - 2\theta$:

$$\int_{(x-q)^t \Sigma^{-1} (x-q) \leq r_\theta^2} p_q(x) \, dx = 1 - 2\theta$$

• The ellipsoidal region

$$(x - q)^t \Sigma^{-1} (x - q) \leq r_\theta^2$$

is the θ-region
Rectilinear-Region-Based (RR) (2)

- Query processing
 - Given a query, θ-region is computed: it is suffice if we have r_θ-table for “normal” Gaussian pdf
 - “Normal” Gaussian: $\Sigma = I, q = 0$
 - Given θ, it returns appropriate r_θ
 - Derive MBR for θ-region and perform Minkowski Sum
 - Retrieve candidates then perform numerical integration
Rectilinear-Region-Based (RR) (3)

- Geometry of bounding box

\[w_i = \sigma_i r_\theta \]
\[\sigma_i = \sqrt{(\Sigma)_{ii}} \]

where \((\Sigma)_{ii}\) is the \((i, i)\) entry of \(\Sigma\)
Oblique-Region-Based (OR) (1)

• Use of oblique rectangle
 – Query processing based on axis transformation
 – Not effective for phase 1 (index-based search): Only used for filtering (phase 2)
Oblique-Region-Based (OR) (2)

• Step 1: Rotate candidate objects
 – Based on the result of eigenvalue decomposition of Σ^{-1}

• Step 2: Check whether each object is inside of the rectangle

$$ r_\theta (\lambda_j)^{-1/2} + \delta $$

– λ_j: Eigenvalue of Σ^{-1} for j-th dimension

$$ r_\theta (\lambda_i)^{-1/2} + \delta $$

– λ_i: Eigenvalue of Σ^{-1} for i-th dimension
Bounding-Function-Based (BF) (1)

• Basic idea
 – Covariance matrix $\Sigma = \mathbf{I}$ ("normal" Gaussian pdf)
 – Isosurface of pdf has a spherical shape

• Approach
 – Let α be the radius for which the integration result is θ
 – If $\text{dist}(q, p) \leq \alpha$ then p satisfies the condition
 – Construct a table that gives $(\delta, \theta) \rightarrow \alpha$ beforehand
Bounding-Function-Based (BF) (2)

- General case
 - isosurface has an **ellipsoidal shape**

- Approach
 - Use of **upper- and lower-bounding functions** for pdf
 - They have spherical isosurfaces
 - Derived from covariance matrix
Bounding Functions

• Original Gaussian pdf

\[p_q(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (x-q)^t \Sigma^{-1} (x-q)\right] \]

• Upper- and lower-bounding functions

\[p_q^\top(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{\lambda^\top}{2} \|x-q\|^2\right] \]
\[p_q^\perp(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{\lambda^\perp}{2} \|x-q\|^2\right] \]

Isosurface has a spherical shape

Note: \(\lambda^\top = \min\{\lambda_i\} \)
\(\lambda^\perp = \max\{\lambda_i\} \)

\[p_q^\perp(x) \leq p_q(x) \leq p_q^\top(x) \] holds
• $\alpha^T (\alpha^\perp)$: Radius with which the integration result of upper- (lower-) bounding function is θ
• Theoretical result
 – Let S^T be a spherical region with radius $\sqrt{\lambda^T} \delta$ and its center relative to the origin is β^T, and assume that S^T satisfies the following equation:

 $$\int_{x \in S^T} p_{\text{norm}}(x) dx = (\lambda^T)^{d/2} |\Sigma|^{1/2} \theta$$

 – Using table that gives $(\delta, \theta) \rightarrow \alpha$, we can get β^T:

 $$(\sqrt{\lambda^T} \delta, (\lambda^T)^{d/2} |\Sigma|^{1/2} \theta) \rightarrow \beta^T$$

 – Then we can get

 $$\alpha^T = \frac{\beta^T}{\sqrt{\lambda^T}}$$
• Step 1: Use of R-tree
 – \{b, c, d\} are retrieved as candidates
• Step 2: Filtering using \(\alpha^\top\)
 – \(b\) is deleted
• Step 2’: Filtering using \(\alpha^\perp\)
 – We can determine \(d\) as an answer without numerical integration
• Step 3: Numerical integration
 – Performed on \{c\}
Outline

• Background and Problem Formulation
• Related Work
• Query Processing Strategies
• Experimental Results
• and Conclusions
Experiments on 2D Data (1)

- Map of Long Beach, CA
 - Normalized into $[0, 1000] \times [0, 1000]$

- 50,747 entries
- Indexed by R-tree
- Covariance matrix

\[
\Sigma = \gamma \begin{bmatrix}
7 & 2\sqrt{3} \\
2\sqrt{3} & 7
\end{bmatrix}
\]

- γ: Scaling parameter
 - Default: $\gamma = 10$
Example Query

- Find objects within distance $\delta = 50$ with probability threshold $\theta = 1\%$
Experiments on 2D Data (2)

- Numerical integration dominates the total cost
- R-tree-based search is negligible
- ALL is the most effective strategy

\[\gamma = 1 \quad 10 \quad 100 \]
\[\delta = 25 \quad \theta = 0.01 \]
Experiments on 2D Data (3)

- Filtering regions ($\delta = 25$, $\theta = 0.01$, $\gamma = 10$)

Integration region for ALL
Experiments on 2D Data (4)

- Filtering regions for different uncertainty setting
 \((\delta = 25, \theta = 0.01)\)

\[
\gamma = 1: \text{Nearly exact}
\]

\[
\gamma = 10: \text{Medium uncertainty}
\]

\[
\gamma = 100: \text{Uncertain}
\]
Experiments on 9D Data (1)

• Motivating Scenario: Example-Based Image Retrieval
 – User specifies sample images
 – Image retrieval system estimates his interest as a Gaussian distribution
Experiments on 9D Data (2)

• Data set: Corel Image Features data set
 – From UCI KDD Archive
 – Color Moments data
 – 68,040 9D vectors
 – Euclidean-distance based similarity

• Experimental Scenario: Pseudo-Feedback
 – Select a random query object, then retrieve k-NN query ($k = 20$) as sample images
 – Derive the covariance matrix from samples

$$\Sigma = \tilde{\Sigma} + \kappa I$$

$\tilde{\Sigma}$: Sample covariance matrix
κ : Normalization parameter
Experiments on 9D Data (3)

• Parameters
 – $\delta = 0.7$: For exact case, it retrieves 15.3 objects
 – $\theta = 40\%$

• Number of candidates (ANS: answer objs)

Too many candidates to retrieve only 3.9 objects!
Experiments on 9D Data (4)

- **Reason:** Curse of dimensionality
- **Plot** shows existence probability for p_{norm} for different radii and dimensions

Location of query object is too vague: In medium dimension, it is quite apart from its distribution center on average

Example: For 9D case, the probability that query object is within distance two is only 9%
Outline

• Background and Problem Formulation
• Related Work
• Query Processing Strategies
• Experimental Results
• Conclusions
Conclusions

• Spatial range query processing methods for imprecise query objects
 – Location of query object is represented by Gaussian distribution
 – Three strategies and their combinations
 – Reduction of numerical integration is important
 – Problem is difficult for medium- and high-dimensional data

• Our related work
 – Probabilistic Nearest Neighbor Queries (MDM’09)
Spatial Range Querying for Gaussian-Based Imprecise Query Objects

Yoshiharu Ishikawa, Yuichi Iijima
Nagoya University

Jeffrey Xu Yu
The Chinese University of Hong Kong